
Sébastien Mathier

www.excel-pratique.com/en



UserForm :

To add a UserForm, do exactly as you would if you were adding a new module :

The UserForm window and "Toolbox" will appear :

If you don't see the Properties window, make sure that it is shown and then start by editing the name of the UserForm

(so that you can easily find it later on) :



A UserForm has its own events, just like a workbook or a worksheet. To add events, double click on the UserForm

window :

Now let's create two events as an example of how they work. The first event will define the initial dimensions of the

UserForm, and the second will increase each of its dimensions by 50 pixels when the user clicks.

The event UserForm_Initialize will fire when the UserForm is launched :

Private Sub UserForm_Initialize()

    my_userform.Height = 100

    my_userform.Width = 100

End Sub

To simplify the code, we can use Me instead of the name of the UserForm (since this code is within the UserForm that

we're working with) :

Private Sub UserForm_Initialize()

    Me.Height = 100

    Me.Width = 100

End Sub

The second event will fire when the user clicks on the UserForm :

Private Sub UserForm_Initialize()

    Me.Height = 100

    Me.Width = 100

End Sub

Private Sub UserForm_Click()

    Me.Height = Me.Height + 50

    Me.Width = Me.Width + 50

End Sub



Launch a UserForm :

To launch a UserForm in a procedure, use Show :

Sub show_userform()

    my_userform.Show

End Sub



Controls :

Controls have all sorts of properties, and the events associated with them vary, but for now we will only look at a few of

the many possible uses of controls in VBA coding.

Let's start by adding the following 3 controls : a Label, a TextBox and a CommandButton :

Now let's edit the names and properties of the controls (using the Caption property, which contains the text). We want

the following result :

For now, when we enter a number and press OK, nothing happens.

To make something happen, we'll start by adding an event that puts the value of the text box into cell A1 and closes the

UserForm.

You can access the options that you see immediately below this text by double clicking on a control :

The drop-down list contains different controls and the UserForm.



Select a button and an event Click :

Private Sub CommandButton_validate_Click()

    Range("A1") = Textbox_number.Value

    'Textbox_number is the name of the text box

    'Value is the property that contains the value of the text box

   

    Unload Me

    'Unload closes the UserForm

    'We are using Me in place of the name of the UserForm (because this code is within the

UserForm that we want to close)

End Sub

The value will now be saved in cell A1 before the closing of the UserForm.

Add a second Label and edit the following properties : Caption, Forecolor (color : red) and Visible (False, to hide the

control by default) :

Now let's add an event that will be fired when the value of the text box is changed, which will display an error message if

the value is not numerical.

Private Sub Textbox_number_Change()

    If IsNumeric(Textbox_number.Value) Then 'IF numerical value ...

        Label_error.Visible = False 'Label hidden

    Else 'OTHERWISE ...

        Label_error.Visible = True 'Label shown

    End If

End Sub

The value will be tested each time a character is entered ...

We still need to prevent the validation of the form if the value is not numerical :

Private Sub CommandButton_validate_Click()

    If IsNumeric(Textbox_number.Value) Then 'IF numerical value ...

        Range("A1") = Textbox_number.Value 'Copy to A1

        Unload Me 'Closing

    Else 'OTHERWISE ...

        MsgBox "Incorrect value"

    End If

End Sub



So as not to leave the right-hand side of the UserForm blank when there isn't any error, we can reduce its size by

modifying the UserForm's Width property :

Private Sub Textbox_number_Change()

    If IsNumeric(Textbox_number.Value) Then 'IF numerical value ...

        Label_error.Visible = False 'Label hidden

        Me.Width = 156 'UserForm Width

    Else 'OTHERWISE ...

        Label_error.Visible = True 'Label shown

        Me.Width = 244 'UserForm Width

    End If

End Sub

Source file : userform1.xls

See result below :

 



Checkboxes :

Here is an example of how to use the CheckBox :

When a checkbox is checked/unchecked, the value of the corresponding cell can be modified by using the Click event :

Private Sub CheckBox1_Click() 'Number 1

    If CheckBox1.Value = True Then 'If checked ...

       Range("A2") = "Checked"

    Else 'If not checked ...

       Range("A2") = "Unchecked"

    End If

End Sub

Private Sub CheckBox2_Click() 'Number 2

    If CheckBox2.Value = True Then 'If checked ...

       Range("B2") = "Checked"

    Else 'If not checked ...

       Range("B2") = "Unchecked"

    End If

End Sub

Private Sub CheckBox3_Click() 'Number 3

    If CheckBox3.Value = True Then 'If checked ...

       Range("C2") = "Checked"

    Else 'If not checked ...

       Range("C2") = "Unchecked"

    End If

End Sub



In this example, the checkboxes start out unchecked when the UserForm is first opened.

To check the boxes when the value of the corresponding cell is "Checked", we'll run a test when the UserForm is

activated, using UserForm_Initialize :

Private Sub UserForm_Initialize() 'Check box if "Checked"

    If Range("A2") = "Checked" Then

        CheckBox1.Value = True

    End If

   

    If Range("B2") = "Checked" Then

        CheckBox2.Value = True

    End If

   

    If Range("C2") = "Checked" Then

        CheckBox3.Value = True

    End If

End Sub

Source file : userform2.xls



The Option Buttons :

The user may only select one Option Button per "group", which is not the case with checkboxes.

To create a group, first insert a Frame and then OptionButton :

Source file : userform3.xls

Once the form has been submitted, we will enter data into the cell that corresponds to the column numbers and

row_value chosen.

In order to know which option button was chosen, we could do the same as in the previous example (with the

checkboxes) but we will do it with a loop to reduce the length of the code.

We're going to use a For Each loop this time, a kind of loop that we haven't yet introduced. This kind of loop makes it

possible to execute instructions for each object in an "object group" :

Private Sub CommandButton1_Click()

    Dim column_value As String, row_value As String

   

    'Loop for each Frame_column control

    For Each column_button In Frame_column.Controls

        'If the value of the control  = True (then, if checked) ...

        If column_button.Value Then

           'The variable "column_value" takes the value of the button text

           column_value = column_button.Caption

        End If

    Next

   

    'Loop for the other frame

    For Each row_button In Frame_row.Controls

        If row_button.Value Then

            row_value = row_button.Caption

        End If

    Next

    Range(column_value & row_value) = "Cell chosen !"

    Unload Me

End Sub

Now this form enters the value "Cell chosen !" into the cell that has been chosen (provided that the form is complete).

To avoid a bug, we need to check to make sure that the user has chosen correctly from the two sets of option buttons.

In this example, when the form is incomplete, the "Confirm" button will appear in gray (deactived). This is not the

simplest solution, but it's a good example of why functions/procedures are useful within a UserForm.



Edit the text as well as the Enabled property to deactivate the button :

The result will be :

In the preceding code, we used 2 For Each loops to retrieve the values of the option buttons. We will now need to use

these same values for the "Confirm" button and the Click events for the ten option buttons.

So that we don't have to copy the loops for each event, we'll call them using a function.

Starting from the preceding code and modifying it, we will achieve this result :

Private Function column_value()

'The function returns the value of the text for the button chosen (column_value)

    For Each column_button In Frame_column.Controls

        If column_button.Value Then

            column_value = column_button.Caption

        End If

    Next

End Function

Private Function row_value()

'The function returns the value of the text for the button chosen (row_value)

    For Each row_button In Frame_row.Controls

        If row_button.Value Then

            row_value = row_button.Caption

        End If

    Next

End Function



Private Sub CommandButton1_Click() 'Action that is taken when you click "Confirm your

selection"

    Range(column_value & row_value) = "Cell chosen !"

    'column_value and row_value are the values returned by the functions

    Unload Me

End Sub

All we have left to do is to create a procedure that verifies that the buttons have been checked correctly (by calling the

two functions), and which will activate the button if necessary.

Here again, the test is performed in a separate procedure to avoid copying the code 10x for each of the option button

events :

Private Sub activate_button()

'Activating the button if the condition is verified

    If column_value <> "" And row_value <> "" Then

    'column_value and row_value are the values returned by the functions

        CommandButton1.Enabled = True

        CommandButton1.Caption = "Confirm your selection"

    End If

End Sub

Private Sub OptionButton11_Click()

    activate_button 'Run the "activate_button" procedure

End Sub

Private Sub OptionButton12_Click()

    activate_button

End Sub

Private Sub OptionButton13_Click()

    activate_button

End Sub

Private Sub OptionButton14_Click()

    activate_button

End Sub

Private Sub OptionButton15_Click()

    activate_button

End Sub

Private Sub OptionButton16_Click()

    activate_button

End Sub

Private Sub OptionButton17_Click()

    activate_button

End Sub

Private Sub OptionButton18_Click()

    activate_button

End Sub

Private Sub OptionButton19_Click()

    activate_button

End Sub

Private Sub OptionButton20_Click()

    activate_button

End Sub



Source file : userform3b.xls



ScrollBar :

Controls can be used outside of UserForms. In this example, we'll use controls right on a worksheet.

Please note that "Creation Mode" must be activated in order to modify a control that is placed on a worksheet (and

likewise deactivated in order to use the control).

In versions d'Excel lower than 2007 : the button is on the "Controls Toolbox" toolbar.

Before we go into detail with this example, please have a look at this :

Our goal is to add a background color to a cell and select it based on the position of the scroll bars in the defined 30 row

x 10 column area.

The properties of the vertical scroll bar :

Min : 1

Max : 30 (because there are 30 rows)

Value : the position of the bar (in this case, between 1 and 30)

The horizontal bar is exactly the same except that it has a Max of 10 ...



Here is the code that will run each time there is a change to the Value of the vertical scrollbar :

'Gray background color in the cells

Cells.Interior.Color = RGB(240, 240, 240)

'Applying color and selecting the cell

With Cells(ScrollBar_vertical.Value, ActiveCell.Column) 'Identifying the cell using Value

    .Interior.Color = RGB(255, 220, 100) 'Applying Orange Color

    .Select 'Selecting the cell

End With

This code will run when the Change and Scroll events are fired and will execute the instructions no matter which part of

the scrollbar is clicked.

Here is the code for the vertical scrollbar :

Private Sub vertical_bar()

    'Applying gray background color to the cells

    Cells.Interior.Color = RGB(240, 240, 240)

   

    'Applying background color and selecting the cell

    With Cells(ScrollBar_vertical.Value, ActiveCell.Column)

        .Interior.Color = RGB(255, 220, 100) 'Orange

        .Select 'Selecting the cell

    End With

End Sub

Private Sub ScrollBar_vertical_Change()

    vertical_bar

End Sub

Private Sub ScrollBar_vertical_Scroll()

    vertical_bar

End Sub

And here is the code for the horizontal scrollbar :

Private Sub horizontal_bar()

    'Applying gray background color to the cells

    Cells.Interior.Color = RGB(240, 240, 240)

    'Applying background color and selecting cell

    With Cells(ActiveCell.Row, ScrollBar_horizontal.Value)

        .Interior.Color = RGB(255, 220, 100) 'Orange

        .Select 'Selecting the cell

    End With

End Sub

Private Sub ScrollBar_horizontal_Change()

    horizontal_bar

End Sub

Private Sub ScrollBar_horizontal_Scroll()

    horizontal_bar

End Sub

Source file : scrollbar.xls



ComboBox and ListBox :

This is the starting point for our next example :

Source file : userform4.xls

When the UserForm is launched, we want the 4 countries to be loaded into the drop-down list (using the AddItem

method) :

Private Sub UserForm_Initialize()

    For i = 1 To 4 ' => to list the 4 countries

       ComboBox_Country.AddItem Cells(1, i) 'Add the values of cells A1 through A4 using the

loop

   Next

End Sub

When the value of the drop-down list changes, we want to add the cities in the chosen country using a loop similar to

the previous one.

In order to do this, we need the column number and the row number.

The property ListIndex contains the number of the selection in the drop-down list (unlike Value, which contains the

value of the list item). Please note that ListIndex begins with the number 0.

So the column number is given by :

column_number = ComboBox_Country.ListIndex + 1

To obtain the number of rows in the chosen country's column, we can search for the row number of the last in a

sequence of non-empty cells :

rows_number = Cells(1, column_number).End(xlDown).Row



Using this information, it is now possible to create a loop to add the cities to the list area :

Private Sub ComboBox_Country_Change()

    'Emptied list area (otherwise the cities are added immediately)

    ListBox_Cities.Clear

   

    Dim column_number As Integer, rows_number As Integer

   

    'The number of the selection (ListIndex starts with 0) :

    column_number = ComboBox_Country.ListIndex + 1

    'Number of rows in the chosen country's column :

    rows_number = Cells(1, column_number).End(xlDown).Row

    For i = 2 To rows_number ' => to list cities

       ListBox_Cities.AddItem Cells(i, column_number)

    Next

End Sub

Note : we could have abbreviated the code above, but we haven't because that would make it much less readable :

Private Sub ComboBox_Country_Change()

    ListBox_Cities.Clear

    For i = 2 To Cells(1, ComboBox_Country.ListIndex + 1).End(xlDown).Row

        ListBox_Cities.AddItem Cells(i, ComboBox_Country.ListIndex + 1)

    Next

End Sub

The city that is chosen will then be entered into the text area :

Private Sub ListBox_Cities_Click()

    TextBox_Choice.Value = ListBox_Cities.Value

End Sub

Source file : userform4b.xls



Exercise :

Now let's try a little exercise to practice using controls ...

This is how we start the exercise :

Source file : controls_exercise.xls

By now it should be clear that the goal here is to fill the table using the form.

A few thinks to keep in mind :

List the countries based on the list on the second worksheet

Verify the contents of the controls before adding a new contact

After inserting a value, reinitialize the values of the controls without closing the form

Take a moment to work through this exercise before looking at the solution ...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.



.

.

.

.

.

.

.

.

.

.

.

.

This is one way that you could solve this problem :

Our first action should be to increase the Zoom property of the UserForm to 120 to make it easier to use the form :

We have already covered option button tests (in the first controls page), so we are using a simpler solution here.

"Mrs" is chosen by default (Value property : True), which means that we don't have to verify that a salutation has been

chosen.

The "Close" button :

Private Sub CommandButton_Close_Click()

    Unload Me

End Sub



The contents of the drop-down list :

Private Sub UserForm_Initialize() 'Loading the list when the UserForm is opened

   For i = 1 To 252 'List of 252 countries froim the "Country" worksheet

      ComboBox_Country.AddItem Sheets("Country").Cells(i, 1)

   Next

End Sub

Verification of controls :

One simple solution would be to display a dialog box if any of the controls is empty :

Private Sub CommandButton_Add_Click()

    If TextBox_Last_Name.Value = "" Or TextBox_First_Name.Value = "" Or TextBox_Address.Value

= "" Or TextBox_Place.Value = "" Or ComboBox_Country.Value = "" Then

        MsgBox "Form incomplete"

    Else

        'Instructions for inserting a contact here ...

    End If

End Sub

But to make things a bit more complicated, each control should be tested individually, and if any of them is empty, its

Label text color should be changed to red :

Private Sub CommandButton_Add_Click()

    'Setting Label text color to black

    Label_Last_Name.ForeColor = RGB(0, 0, 0)

    Label_First_Name.ForeColor = RGB(0, 0, 0)

    Label_Address.ForeColor = RGB(0, 0, 0)

    Label_Place.ForeColor = RGB(0, 0, 0)

    Label_Country.ForeColor = RGB(0, 0, 0)

    'Content controls

    If TextBox_Last_Name.Value = "" Then 'IF no "name" provided ...

        Label_Last_Name.ForeColor = RGB(255, 0, 0) 'Set Label "name" color to red

    ElseIf TextBox_First_Name.Value = "" Then

        Label_First_Name.ForeColor = RGB(255, 0, 0)

    ElseIf TextBox_Address.Value = "" Then

        Label_Address.ForeColor = RGB(255, 0, 0)

    ElseIf TextBox_Place.Value = "" Then

        Label_Place.ForeColor = RGB(255, 0, 0)

    ElseIf ComboBox_Country.Value = "" Then

        Label_Country.ForeColor = RGB(255, 0, 0)

    Else

        'Instructions for inserting a contact here ...

    End If

End Sub



Inserting data :

The following code should be inserted in the place indicated in the code above (see commentary) :

Dim row_number As Integer, salutation As String

'Choice of Salutation

For Each salutation_button In Frame_Salutation.Controls

    If salutation_button.Value Then

        salutation = salutation_button.Caption 'Salutation chosen

    End If

Next

'row_number = row number of the last non-empty cell in the column +1

row_number = Range("A65536").End(xlUp).Row + 1

'Inserting values into the worksheet

Cells(row_number, 1) = salutation

Cells(row_number, 2) = TextBox_Last_Name.Value

Cells(row_number, 3) = TextBox_First_Name.Value

Cells(row_number, 4) = TextBox_Address.Value

Cells(row_number, 5) = TextBox_Place.Value

Cells(row_number, 6) = ComboBox_Country.Value

'After insertion, the initial values are replaced

OptionButton1.Value = True

TextBox_Last_Name.Value = ""

TextBox_First_Name.Value = ""

TextBox_Address.Value = ""

TextBox_Place.Value = ""

ComboBox_Country.ListIndex = -1

Overall view :

That's all, and here you have the complete code for the exercise and the downloadable Excel file :



Private Sub CommandButton_Close_Click()

    Unload Me

End Sub

Private Sub UserForm_Initialize() 'List of 252 countries on the "Country" worksheet

   For i = 1 To 252

       ComboBox_Country.AddItem Sheets("Country").Cells(i, 1)

   Next

End Sub

Private Sub CommandButton_Add_Click()

    'Setting Label color to black

    Label_Last_Name.ForeColor = RGB(0, 0, 0)

    Label_First_Name.ForeColor = RGB(0, 0, 0)

    Label_Address.ForeColor = RGB(0, 0, 0)

    Label_Place.ForeColor = RGB(0, 0, 0)

    Label_Country.ForeColor = RGB(0, 0, 0)

    'Content controls

    If TextBox_Last_Name.Value = "" Then 'If no "name" provided ...

        Label_Last_Name.ForeColor = RGB(255, 0, 0) 'Set Label "name" color to red

    ElseIf TextBox_First_Name.Value = "" Then

        Label_First_Name.ForeColor = RGB(255, 0, 0)

    ElseIf TextBox_Address.Value = "" Then

        Label_Address.ForeColor = RGB(255, 0, 0)

    ElseIf TextBox_Place.Value = "" Then

        Label_Place.ForeColor = RGB(255, 0, 0)

    ElseIf ComboBox_Country.Value = "" Then

        Label_Country.ForeColor = RGB(255, 0, 0)

    Else

        'If the form is complete, the values will be inserted onto the worksheet

        Dim row_number As Integer, salutation As String

       

        'Choice of salutation

        For Each salutation_button In Frame_Salutation.Controls

            If salutation_button.Value Then

                salutation = salutation_button.Caption

            End If

        Next

        'row_number = row number of the last non-empty cell in column +1

        row_number = Range("A65536").End(xlUp).Row + 1

        'Inserting values onto the worksheet

        Cells(row_number, 1) = salutation

        Cells(row_number, 2) = TextBox_Last_Name.Value

        Cells(row_number, 3) = TextBox_First_Name.Value

        Cells(row_number, 4) = TextBox_Address.Value

        Cells(row_number, 5) = TextBox_Place.Value

        Cells(row_number, 6) = ComboBox_Country.Value

       

        'After insert, we replace the initial values

        OptionButton1.Value = True

        TextBox_Last_Name.Value = ""

        TextBox_First_Name.Value = ""

        TextBox_Address.Value = ""

        TextBox_Place.Value = ""

        ComboBox_Country.ListIndex = -1

    End If

End Sub



Source file : controls_exercise2.xls

© Excel-Pratique.com - PRIVATE USE ONLY


